Thể loại
Loại hình
Tất cả

bangnam.com

Relaxed, inspiring essays about happiness.

10.7K

10

8

Phương trình tương đương Toán 10

Với Cách giải phương trình bằng phương pháp biến đổi tương đương cực hay Toán lớp 10 gồm đầy đủ phương pháp giải, ví dụ minh họa và bài tập trắc nghiệm có lời giải chi tiết sẽ giúp học sinh ôn tập, biết cách làm dạng bài tập phương trình bằng phương pháp biến đổi tương đương từ đó đạt điểm cao trong bài thi môn Toán lớp 10.

- Phương trình tương đương: Hai phương trình f1(x) = g1(x) và f2(x) = g2(x) được gọi là tương đương nếu chúng có cùng tập nghiệm

- Kí hiệu là f1(x) = g1(x) ⇔ f2(x) = g2(x)

- Phép biến đổi không làm thay đổi tập nghiệm của phương trình gọi là phép biến đổi tương đương.

- Phương trình hệ quả: f2(x) = g2(x) gọi là phương trình hệ quả của phương trình f1(x) = g1(x) nếu tập nghiệm của nó chứa tập nghiệm của phương trình f1(x) = g1(x)

- Kí hiệu là f1(x) = g1(x) ⇒ f2(x) = g2(x)

- Để giải phương trình ta thực hiện các phép biến đổi để đưa về phương trình tương đương với phương trình đã cho đơn giản hơn trong việc giải nó. Một số phép biến đổi thường sử dụng:

   + Cộng (trừ) cả hai vế của phương trình mà không làm thay đổi điều kiện xác định của phương trình ta thu được phương trình tương đương phương trình đã cho.

   + Nhân (chia) vào hai vế với một biểu thức khác không và không làm thay đổi điều kiện xác định của phương trình ta thu được phương trình tương đương với phương trình đã cho.

   + Bình phương hai vế của phương trình ta thu được phương trình hệ quả của phương trình đã cho.

Bình phương hai vế của phương trình (hai vế luôn cùng dấu) ta thu được phương trình tương đương với phương trình đã cho.

Bài 1: Giải phương trình

Hướng dẫn:

Điều kiện:

Thử lại ta thấy cả x = 0 và x = 2 đều thỏa mãn phương trình

Vậy tập nghiệm của phương trình là S = {0;2}

Bài 2: Giải phương trình

Hướng dẫn:

Điều kiện:

Ta thấy x = 3 thỏa mãn điều kiện (*)

Nếu x ≠ 3. thì (*)

Do đó điều kiện xác định của phương trình là x = 3 hoặc x = 5/3

Thay x = 3 và x = 5/3 vào phương trình thấy chỉ có x = 3 thỏa mãn

Vậy phương trình đã cho có nghiệm duy nhất S = {3}

Bài 3: Giải phương trình

Hướng dẫn:

a. Điều kiện: x ≥ -1.

Ta có x = -1 là một nghiệm.

Nếu x > -1 thì √(x+1) > 0. Do đó phương trình tương đương

x2 - x - 2 = 0 ⇔ x = -1 hoặc x = 2.

Đối chiếu điều kiện ta được nghiệm của phương trình là x = -1, x = 2.

Vậy phương trình đã cho có hai nghiệm S = {-1; 2}

b. ĐKXĐ: x > 2

Với điều kiện đó phương trình tương đương với phương trình

x2 = 1 - (x - 2)⇔ x2 + x - 3 = 0

Đối chiếu với điều kiện ta thấy không có giá trị nào thỏa mãn

Vậy phương trình vô nghiệm

Bài 4: Giải phương trình

Hướng dẫn:

a. Điều kiện: x ≠ 1.

Với điều kiện trên phương trình tương đương x2 - x + 1 = 2x - 1 ⇔ x = 1 hoặc x = 2

Đối chiếu điều kiện ta được phương trình có nghiệm duy nhất x = 2.

b. ĐKXĐ :

Với điều kiện đó phương trình tương đương với

Đối chiếu với điều kiện ta có nghiệm của phương trình là x = -3

Bài 5: Tìm m để cặp phương trình sau tương đương

x2 + mx - 1 = 0  (1) và (m-1)x2 + 2(m-2)x + m - 3 = 0   (2)

Hướng dẫn:

Giả sử hai phương trình (1) và (2) tương đương

Ta có (m-1)x2 + 2(m-2)x + m - 3 = 0

Do hai phương trình tương đương nên x = -1 cũng là nghiệm của phương trình  (1)

Thay x = -1 vào phương trình (1) ta được m = 0

Với m = 0 thay vào hai phương trình ta thấy không tương đương.

Vậy không có giá trị nào của m thỏa mãn.

Thế nào là hai phương trình tương đương

a. Định nghĩa: Hai phương trình gọi là tương đương nếu chúng có cùng một tập hợp nghiệm.

b. Hai quy tắc biến đổi tương đương các phương trình: 

2. Phép biến đổi tương đương

Phép biến đổi không làm thay đổi tập nghiệm của phương trình gọi là phép biến đổi tương đương. Ta có một số phép biến đổi tương đương đã biết sau

- Cộng hoặc trừ cả hai vế với cùng một số hoặc biểu thức.

- Chuyển một số hoặc biểu thức từ vế này sang vế kia và đổi dấu.

- Nhân hoặc chia hai vế của phương trình với cùng một số hoặc biểu thức khác 0.

Chú ý. Các phép biến đổi trên không làm thay đổi điều kiện của phương trình thì mới được phương trình tương đương

3. Phương trình hệ quả

Gọi S1​,S2​ lần lượt là tập nghiệm của hai phương trình (1) và (2). Ta nói phương trình (2) là phương trình hệ quả của phương trình (1) khi S1​ ⊂S2​. Ta viết (1)⇒(2).

Ví dụ 1. Cho hai phương trình:

Hai phương trình trên có tương đương không? Phương trình này có là phương trình hệ quả của phương trình kia không?

Chú ý. Phép bình phương hai vế một phương trình không phải là phép biến đổi tương đương mà chỉ là phép biến đổi hệ quả.

Ví dụ 2. Cho hai phương trình:

Hai phương trình trên có tương đương không? Phương trình này có là phương trình hệ quả của phương trình kia không?

Khi hai vế của phương trình đều không âm, phương hai vế của phương trình ta được một phương trình tương đương.

Công thức

4. Phương trình bậc nhất một ẩn:

 

 

 

 

 

 

 

5. Cách giải phương trình đưa được về dạng ax + b = 0 (a ≠ 0) (không có ẩn ở mẫu):

- Quy đồng mẫu thức 2 vế

- Khử mẫu thức.

- Thực hiện các phép tính và chuyển vế (chuyển các hạng tử chứa ẩn sang một vế, các hằng số sang vế bên kia), đưa phương trình về dạng Ax = B

Ví dụ 1. 

Giải phương trình: 

Dịch vụ SEO website - Thiết kế Website

★★★★★ 7 đánh giá trên Google
Văn phòng công ty

Địa chỉ: Số 5 Trần Kim Xuyến - P.Trung Hoà - Q.Cầu Giấy - TP. Hả Nội

Điện thoại: 0922 892 892

Trang web: Bangnam.com

Từ Dịch vụ SEO website - Thiết kế Website

"BANGNAM là đơn vị cung cấp Dịch Vụ SEO, Dịch vụ thiết kế Website, Giải pháp quản trị doanh nghiệp ERP hàng đầu tại Việt Nam."

Mọi người cũng tìm kiếm

Thiết kế website Hà Nội
Nhà thiết kế trang web
Thiết kế website bán hàng
Nhà thiết kế trang web
Dịch vụ SEO
Nhà tối ưu công cụ tìm kiếm
Thiết kế website TP HCM
Nhà thiết kế trang web
Thiết kế website Hà Nội
Nhà thiết kế trang web